Contoh pembahasan soal UN Matematika 2017. Sunday, June 21, 2015. Kunci Jawaban dan Pembahasan SBMPTN 2015 Matematika IPA SIMAK UI 2011; Matematika IPA SIMAK UI 2012; Soal USM STAN; Soal dan Pembahasan USM STAN 1999-2008; Soal dan Pembahasan USM STAN 2009;
Soal dan Pembahasan No 1-5 Matematika IPA SIMAK UI 2010 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 1 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 2 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 3 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 4 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 5 Soal dan Pembahasan No 6-10 Matematika IPA SIMAK UI 2010 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 6Khusus Nomor 6, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban D Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 7Khusus Nomor 7, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban A Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 8Khusus Nomor 8, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban D Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 9Khusus Nomor 9, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban A Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 10Khusus Nomor 10, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban B Soal dan Pembahasan No 11-12 Matematika IPA SIMAK UI 2010 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 11Khusus Nomor 11, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban D Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 12Khusus Nomor 12, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban A

2015 Soal IPA 2008 - 2014; SIMAK UI. Matematika Dasar dan IPA; UN Soal dan Pembahasan SBMPTN 2017 Matematika Dasar Kode 265 Soal SBMPTN Matematika Dasar 2011-2018 Berdasarkan soal SBMPTN dari Page 25/40. Get Free Soal Sbmptn Matematika Dasar Dan Pem bahasannya Berkas tahun 2011-2018, tutor

Berikut ini adalah Soal dan Pembahasan Matematika IPA SIMAK UI 2018 dengan Kode Soal 416. Soal ini merupakan salah satu alat tes untuk menyeleksi mahasiswa/i tahun ajaran 2018/2019 yang akan mengecap pendidikan tinggi di universitas ternama di Indonesia yaitu Universitas Indonesia UI. Universitas Indonesia terletak di Jl. Margonda Raya, Beji, Pondok Cina Kota Depok Jawa Barat. Pembahasan SIMAK UI 2018/2019 ini adalah hasil pemikiran sederhana saya yang tentu masih jauh dari kata sempurna. Saya sangat menghargai kritik dan saran dari pengunjung setia Catatan Matematika yang sifatnya membangun dan mari diskusi dan belajar bersama melalui kolom komentar di akhir postingan ini. Soal SIMAK UI 2018 - Matematika IPA No. 1 Diketahui suku banyak $fx$ dibagi ${{x}^{2}}+x-2$ bersisa $ax+b$ dan dibagi ${{x}^{2}}-4x+3$ bersisa $2bx+a-1$. Jika $f-2=7$, maka ${{a}^{2}}+{{b}^{2}}$ = … A. 12 B. 10 C. 9 D. 8 E. 5Penyelesaian Lihat/Tutup Yang dibagi = Pembagi x Hasil bagi + Sisa Suku banyak $fx$ dibagi $x^2+x-2$ bersisa $ax+b$, maka $fx$ = $x^2+x-2$Hasil + $ax+b$ $fx$ = $x+2x-1$Hasil + $ax+b$ $f-2$ = $-2+2-2-1$Hasil + $-2a+b$ $f-2$ = $-2a+b=7$ … persamaan 1 $f1$ = $1+21-1$Hasil + $a+b$ $f1$ = $a+b$ … persamaan 2 Suku banyak $fx$ dibagi $x^2-4x+3$ bersisa $2bx+a-1$, maka $fx$ = $x^2-4x+3$Hasil + $2bx+a-1$ $fx$ = $x-1x-3$Hasil + $2bx+a-1$ $f1$ = $1-11-3$Hasil + $2b+a-1$ $f1$ = $2b+a-1$ substitusi ke persamaan 2, maka $2b+a-1=a+b$ $b=1$ Substitusi ke persamaan 1, maka $-2a+b=7\Leftrightarrow -2a+1=7\Leftrightarrow a=-3$ ${{a}^{2}}+{{b}^{2}}={{-3}^{2}}+{{1}^{2}}=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 2 Himpunan penyelesaian $16-x^2\le x+4$ adalah … A. {$x\in R-4\le x\le 4$} B. {$x\in R-4\le x\le 3$} C. {$x\in Rx\le -4$ atau $x\ge 4$} D. {$x\in R0\le x\le 3$} E. {$x\in Rx\le -4$ atau $x\ge 3$}Penyelesaian Lihat/Tutup i Untuk $x\ge -4$ maka $16-x^2\le x+4$ $16-x^2\le x+4$ $12-x^2-x\le 0$ $x^2+x-12\ge 0$ $x+4x-3\ge 0$ $x\le -4$ atau $x\ge 3$ yang memenuhi syarat $x\ge -4$ adalah $x\ge 3$. ii Untuk $x\le 4$, maka $16-x^2\le x+4$ $16-x^2\le -x+4$ $20-x^2+x\le 0$ $x^2-x-20\ge 0$ $x-5x+4\ge 0$ $x\le -4$ atau $x\ge 5$ yang memenuhi syarat $x\le 4$ adalah $x\le -4$ Dari i dan ii diperoleh {$x\in Rx\le -4$ atau $x\ge 3$} Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 3 Jika ${{x}_{1}}$ atau ${{x}_{2}}$ memenuhi persamaan $2{{\sin }^{2}}x-\cos x=1$, $0\le x\le \pi $, nilai ${{x}_{1}}+{{x}_{2}}$ adalah … A. $\frac{\pi }{3}$ B. $\frac{2\pi }{3}$ C. $\pi $ D. $\frac{4}{3}\pi $ E. $2\pi $Penyelesaian Lihat/Tutup $2{{\sin }^{2}}x-\cos x=1$ $21-{{\cos }^{2}}x-\cos x=1$ $2{{\cos }^{2}}x+\cos x-1=0$ $2\cos x-1\cos x+1=0$ $\cos x=\frac{1}{2}\Rightarrow {{x}_{1}}={{60}^{o}}$ atau $\cos x=-1\Leftrightarrow {{x}_{2}}={{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{60}^{o}}+{{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{240}^{o}}=\frac{{{240}^{o}}}{{{180}^{o}}}\pi =\frac{4}{3}\pi $ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 4 Jika $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$, nilai $a+b$ untuk $a$ dan $b$ bilangan bulat positif adalah … A. -4 B. -2 C. 0 D. 2 E. 4Penyelesaian Lihat/Tutup $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ $\underset{x\to -3}{\mathop{\lim }}\,\frac{3+ax}{3axb{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ Untuk $x=-3$ maka $3+ax=0\Leftrightarrow 3-3a=0\Leftrightarrow a=1$ Untuk $x=-3$ maka $b{{x}^{3}}+27=0\Leftrightarrow b.{{-3}^{3}}+27=0\Leftrightarrow b=1$ $a+b=1+1=2$ Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 5 Jika $fx$ fungsi kontinu di interval $[1,30]$ dan $\int\limits_{6}^{30}{fxdx}=30$, maka $\int\limits_{1}^{9}{f3y+3dy}$ = … A. 5 B. 10 C. 15 D. 18 E. 27Penyelesaian Lihat/Tutup Misal $\int\limits_{y=1}^{y=9}{f3y+3dy}$ $x=3y+3$ maka $\frac{dx}{dy}=3\Leftrightarrow dy=\frac{1}{3}dx$ $y=1\Rightarrow x=6$ $y=9\Rightarrow x=30$ $\int\limits_{1}^{9}{f3y+3dy}=\int\limits_{6}^{30}{fx.\frac{1}{3}dx}$ $=\frac{1}{3}\int\limits_{6}^{30}{fxdx}$ $=\frac{1}{3}.30=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 6 Pada balok dengan AB = 6, BC = 3, dan CG = 2, titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika 3EM = EH, FN = 2NG, 3DO = 2DA, dan $\alpha$ adalah bidang irisan balok yang melalui M, N, dan O, perbandingan luas bidang $\alpha$ dengan luas permukaan balok adalah … A. $\frac{\sqrt{35}}{36}$ B. $\frac{\sqrt{37}}{36}$ C. $\frac{\sqrt{38}}{36}$ D. $\frac{\sqrt{39}}{36}$ E. $\frac{\sqrt{41}}{36}$Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut Bidang $\alpha$ adalah bidang MNN’O berupa persegipanjang Perhatikan segitiga MM’N siku-siku di titik M, dengan MM’ = 6 cm, M’N = 1 cm, maka $MN=\sqrt{{{6}^{2}}+{{1}^{1}}}=\sqrt{37}$ Luas bidang $\alpha$ adalah $=N'N\times MN$ $=2\sqrt{37}$ Luas permukaan balok adalah $=2 $=2 $\frac{\alpha }{ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 7 Diberikan kubus Sebuah titik P terletak pada rusuk CG sehingga CP PG = 5 2. Jika $\alpha $ adalah sudut terbesar antara rusuk CG dan bidang PBD, maka $\sin \alpha $ = … A. $-\frac{7\sqrt{11}}{33}$ B. $-\frac{7\sqrt{11}}{44}$ C. $\frac{7\sqrt{11}}{33}$ D. $\frac{7\sqrt{11}}{44}$ E. $\frac{7\sqrt{11}}{55}$Penyelesaian Lihat/Tutup Karena CP PG = 5 2 untuk mempermudah perhitungan misalkan panjang rusuk kubus 14 cm, maka CP = 10 cm dan PG = 4 cm. Perhatikan gambar berikut ini! Sudut terbesar antara rusuk CG dan bidang PBD adalah $\alpha $, dengan $\alpha ={{180}^{o}}-\angle CPQ$ $CQ=7\sqrt{2}$, CP = 10, maka $PQ=\sqrt{C{{Q}^{2}}+C{{P}^{2}}}$ $PQ=\sqrt{{{7\sqrt{2}}^{2}}+{{10}^{2}}}$ $PQ=3\sqrt{22}$ $\sin \alpha =\sin {{180}^{o}}-\angle CPQ$ $\sin \alpha =\sin \angle CPQ$ $\sin \alpha =\frac{CQ}{PQ}$ $\sin \alpha =\frac{7\sqrt{2}}{3\sqrt{22}}$ $\sin \alpha =\frac{7}{3\sqrt{11}}\times \frac{\sqrt{11}}{\sqrt{11}}=\frac{7\sqrt{11}}{33}$ Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 8 Jika ${{3}^{x}}+{{5}^{y}}=18$, nilai maksimum ${{3}^{x}}{{.5}^{y}}$ adalah … A. 72 B. 80 C. 81 D. 86 E. 88Penyelesaian Lihat/Tutup ${{3}^{x}}+{{5}^{y}}=18$ Misal ${{3}^{x}}=a$ dan ${{3}^{y}}=b$ , maka $a+b=18\Leftrightarrow a=18-b$ nilai maksimum $ab=...?$ $L= $L=a18-a$ $L=18a-{{a}^{2}}$ Maksimum/minimum, maka $L'=0$ $18-2a=0\Leftrightarrow a=9$ $L=18a-{{a}^{2}}\Leftrightarrow L= Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 9 Diketahui $sx-y=0$ adalah garis singgung sebuah lingkaran yang titik pusatnya di kuadran ketiga dan berjarak 1 satuan ke sumbu-$x$. Jika lingkaran tersebut menyinggung sumbu-$x$ dan titik pusatnya dilalui garis $x=-2$, nilai $3s$ adalah … A. $\frac{1}{6}$ B. $\frac{4}{3}$ C. 3 D. 4 E. 6Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut! Dari gambar diperoleh Lingkaran melalui berpusat di titik -2,-1 dan berjari-jari 1, maka persamaan lingkarannya adalah ${{x+2}^{2}}+{{y+1}^{2}}={{1}^{2}}$, $y=sx$ ${{x+2}^{2}}+{{sx+1}^{2}}=1$ $x^2+4x+4+{{s}^{2}}x^2+2sx+1=1$ ${{s}^{2}}+1x^2+2s+4x+4=0$, syarat menyinggung $D=0$, ${{b}^{2}}-4ac=0$ ${{2s+4}^{2}}-4{{s}^{2}}+14=0$ $4{{s}^{2}}+16s+16-16{{s}^{2}}-16=0$ $-12{{s}^{2}}+16s=0$ $-4s3s-4=0$ $-4s=0$ atau $3s=4$ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 10 Jika kurva $y=a-2x^2+\sqrt{3}1-ax+a-2$ selalu berada di atas sumbu-$x$, bilangan bulat terkecil $a-2$ yang memenuhi adalah … A. 6 B. 7 C. 8 D. 9 E. 10Penyelesaian Lihat/Tutup $y=a-2x^2+\sqrt{3}1-ax+a-2$ maka $A=a-2$, $B=\sqrt{3}1-a$, $C=a-2$, Selalu berada di atas sumbu-X definit positif, maka 1 $A > 0\Leftrightarrow a-2 > 0\Leftrightarrow a>2$ 2 $D 0$, dengan rumus abc maka $a=\frac{10\pm \sqrt{48}}{2}$ $a=\frac{10\pm 4\sqrt{3}}{2}$ $a=5\pm 2\sqrt{3}$ $a 5+2\sqrt{3}$ Dari 1 dan 2 diperoleh batas nilai $a$ adalah $a > 5+2\sqrt{3}\Leftrightarrow a > 5+\sqrt{12}$ $a-2 > 5+\sqrt{12}-2$, karena diminta bilangan bulat terkecil, maka $a-2=5+\sqrt{16}-2=7$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 11 Jika $a+b-c=2$, ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$, dan $ab=\frac{3}{2}{{c}^{2}}$, nilai $c$ adalah … A. 0 B. 1 C. 2 D. 3 E. 6Penyelesaian Lihat/Tutup $a+b-c=2$ $a+b=2+c$ ${{a+b}^{2}}={{2+c}^{2}}$ ${{a}^{2}}+{{b}^{2}}+2ab={{c}^{2}}+4c+4$ ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$ - $2ab+4{{c}^{2}}={{c}^{2}}+4c+2$ $3{{c}^{2}}-4c+2ab-2=0$, diketahui $ab=\frac{3}{2}{{c}^{2}}$ $3{{c}^{2}}-4c+2.\frac{3}{2}{{c}^{2}}-2=0$ $6{{c}^{2}}-4c-2=0$ $3{{c}^{2}}-2c-1=0$ $3c+1c-1=0$ $c=-\frac{1}{3}$ atau $c=1$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 12 Jika ${{S}_{n}}$ adalah jumlah sampai suku ke-n dari barisan geometri, ${{S}_{1}}+{{S}_{6}}=1024$ dan ${{S}_{3}}\times {{S}_{4}}=1023$, maka $\frac{{{S}_{11}}}{{{S}_{8}}}$ = … A. 3 B. 16 C. 32 D. 64 E. 254Penyelesaian Lihat/Tutup Soal Keliru Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Soal SIMAK UI 2018 - Matematika IPA No. 13 Jika vektor $\vec{u}=2,-1,2$ dan $\vec{v}=4,10,-8$, maka … 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$ bila $k=\frac{17}{18}$ 2 sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. 3 $pro{{y}_{{\vec{u}}}}\vec{v}=6$ 4 Jarak antara $\vec{u}$ dan $\vec{v}$ sama dengan $\vec{u}+\vec{v}$Penyelesaian Lihat/Tutup Pernyataan 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$, maka $\vec{u}+k\vec{v}.\vec{u}=0$ $\left \begin{matrix} 2+4k \\ -1+10k \\ 2-8k \\ \end{matrix} \right.\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right=0$ $4+4k+1-10k+4-16k=0$ $-22k=-9\Leftrightarrow k=\frac{9}{22}$, Pernyataan 1 SALAH Pernyataan 2 $\cos u,v=\frac{ $\cos u,v=\frac{\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right.\left \begin{matrix} 4 \\ 10 \\ -8 \\ \end{matrix} \right}{\sqrt{4+1+4}.\sqrt{16+100+64}}$ $\cos u,v=\frac{8-10-16}{ $\cos u,v=\frac{-18}{18\sqrt{5}}$, karena nilainya negatif maka sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. Pernyataan 2 BENAR. Berdasarkan petunjuk C, tanpa mengecek pernyataan 4 maka opsi yang memenuhi adalah C. Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 14 Jika $y=\frac{1}{3}{{x}^{3}}-ax+b$, $a > 0$, dan $a,b\in R$, maka … 1 nilai minimum lokal $y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ 2 nilai maksimum lokal $y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ 3 $y$ stasioner saat $x={{a}^{\frac{1}{2}}}$ 4 naik pada interval $\left[ -\infty ,-{{a}^{\frac{1}{2}}} \right]$Penyelesaian Lihat/Tutup $y=\frac{1}{3}{{x}^{3}}-ax+b$ $\frac{dy}{dx}=x^2-a=0$, karena $a > 0$ maka $x+\sqrt{a}x-\sqrt{a}=0$ $x=-\sqrt{a}$ atau $x=\sqrt{a}$, Dari gambar garis bilangan, maka pernyataan 3 dan 4 BENAR. $y=\frac{1}{3}{{x}^{3}}-ax+b$ $x=-\sqrt{a}\Rightarrow y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai maksimum lokal, pernyataan 1 BENAR. $x=\sqrt{a}\Rightarrow y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai minimum lokal, pernyataan 2 BENAR. Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 15 Jika $\alpha =-\frac{\pi }{12}$, maka … 1 ${{\sin }^{4}}\alpha +{{\cos }^{4}}\alpha =\frac{6}{8}$ 2 ${{\sin }^{6}}\alpha +{{\cos }^{6}}\alpha =\frac{12}{16}$ 3 ${{\cos }^{4}}\alpha =\frac{1}{2}-\frac{1}{4}\sqrt{3}$ 4 ${{\sin }^{4}}\alpha =\frac{7}{16}-\frac{1}{4}\sqrt{3}$Penyelesaian Lihat/Tutup $\alpha =-\frac{\pi }{12}=-{{15}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}-{{30}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}\cos {{30}^{o}}-\cos {{45}^{o}}\sin {{30}^{o}}$ $\sin {{15}^{o}}=\frac{1}{2}\sqrt{2}.\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{2}.\frac{1}{2}$ $\sin {{15}^{o}}=\frac{\sqrt{6}-\sqrt{2}}{4}$ ${{\sin }^{2}}{{15}^{o}}={{\left \frac{\sqrt{6}-\sqrt{2}}{4} \right}^{2}}$ ${{\sin }^{2}}{{15}^{o}}=\frac{2-\sqrt{3}}{4}$ ${{\sin }^{4}}{{15}^{o}}={{\left \frac{2-\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 4 BENAR. Dengan cara yang sama $\cos {{15}^{o}}=\frac{\sqrt{6}+\sqrt{2}}{4}$ ${{\cos }^{2}}{{15}^{o}}=\frac{2+\sqrt{3}}{4}$ ${{\cos }^{4}}{{15}^{o}}={{\left \frac{2+\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 3 SALAH. Dengan logika, berdasarkan petunjuk C maka kita sudah dapat menentukan opsi yang memenuhi adalah D. Jawaban D Subscribe and Follow Our Channel
PembahasanAngka-angka yang perlu disesuaikan 25 = 5 2 81 = 3 4 36 = 2 2.3 2 4 = 2 2 Rumus-rumus yang dibutuhkan untuk mengerjakan soal di atas. a log a = 1 log ab = log a + log b a log b n = n a log b a n log b = 1/n a log b a log b b log c = a log c Dengan rumus-rumus tersebut, mari kita kerjakan soal di atas.
Salam BERBAGI ITU INDAH dari saya, melalui saya akan membagikan PEMBAHASAN UN MATEMATIKA IPA 2017 untuk adik-adik sekalian. Silahkan dipelajari dan dipahami dengan cermat. Semakin banyak berlatih dan bersahabat dengan soal-soal Ujian Nasional, niscaya adik-adik akan semakin paham dan mengetahui teknik-teknik menjawab soal matematika secara konsep, atau alternatif logika sederhana. Jika pada pembahasan ini ada hal-hal yang kurang dimengerti, silahkan berdiskusi bersama teman, guru, atau bersama abang2, kakak, pengajar di tempat les/bimbel. Oke, langsung aja disimak PEMBAHASAN UN MATEMATIKA IPA SMA 2017 berikut ini. BERBAGI_ITU_INDAH Semoga postingan Soal dan Pembahasan Matematika IPA UN SMA 2017 ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. Subscribe and Follow Our Channel
Yuklihat contoh soal dan pembahasan mengenai topik eksponen di artikel ini! SBMPTN. Informasi SBMPTN; Soal SBMPTN SBMPTN, Ujian Nasional, Simak UI, UM UGM atau Ujian Mandiri yang dilakukan oleh pihak perguruan tinggi lainnya, bahkan yang paling lama sekalipun yaitu Sipenmaru. Contoh Soal Matematika Dasar . Berapakah hasil dari: A. 2013
0 Viewers Soal Matematika IPA SIMAK UI Tahun 2017 + Jawaban Secara Rinci - Selamat sore menjelang malam para pejuang SIMAK UI, Semangat kalian yang pantang menyerah dalam mengejar impian masuk ke KampusJas Kuning hingga saat ini, suatu saat akan membuahkan hasil. Pada moment ini guna memperlancar semua itu, akan membagikan Soal Matematika IPA SIMAK UI Tahun 2017 + Jawaban Secara Rinci. Semoga soal-soal ini dapat menjadi jalan pembuka untuk dapat masuk ke universitas impian. PUNYA KOLEKSI SOAL SIMAK UI + JAWABANNYA? SHARE/BAGIKAN LINK NYA DI KOLOM KOMENTAR YA PUNYA KOLEKSI SOAL SIMAK UI + JAWABANNYA? SHARE/BAGIKAN LINK NYA DI KOLOM KOMENTAR YA untuk keyword artikel Soal Matematika IPA SIMAK UI Tahun 2017 + Jawaban Secara Rinci soal SIMAK UI Matematika IPA, soal SIMAK UI Matematika IPA 2017, soal um UI Matematika IPA dan pembahasan pdf, kunci jawaban SIMAK UI Matematika IPA 2017, pembahasan SIMAK UI Matematika IPA 2017, materi Matematika IPA SIMAK UI, soal Matematika IPA SIMAK UI vokasi, buku SIMAK Matematika IPA UI Soal Matematika IPA SIMAK UI Tahun 2017 + Jawaban Secara Rinci Lihat Soal Kemampuan Dasar SIMAK UI Tahun 2017 + Jawaban Secara Rinci Lihat Soal Kemampuan IPA SIMAK UI Tahun 2017 + Jawaban Secara Rinci Lihat Soal Kemampuan IPS SIMAK UI Tahun 2017 + Jawaban Secara Rinci Lihat Baiklah langsung saja berikut Soal Matematika IPA SIMAK UI Tahun 2017 + Jawaban Secara RinciSoal SIMAK UI Lengkap 2009 + Jawaban Secara Rinci 2009 Lengkap Lihat Soal SIMAK UI Lengkap 2010 + Jawaban Secara Rinci 2010 Lengkap Lihat Soal SIMAK UI Lengkap 2011 + Jawaban Secara Rinci 2011 Lengkap Lihat Soal SIMAK UI Lengkap 2012 + Jawaban Secara Rinci 2012 Lengkap Lihat Soal SIMAK UI Lengkap 2013 + Jawaban Secara Rinci 2013 Lengkap Lihat Soal SIMAK UI Lengkap 2014 + Jawaban Secara Rinci 2014 Lengkap Lihat Soal SIMAK UI Lengkap 2015 + Jawaban Secara Rinci 2015 Lengkap Lihat Soal SIMAK UI Lengkap 2016 + Jawaban Secara Rinci 2016 Lengkap Lihat Soal SIMAK UI Lengkap 2017 + Jawaban Secara Rinci 2017 Lengkap Lihat Soal SIMAK UI Lengkap 2017 + Jawaban Secara Rinci 2017 Lengkap Belum Tersedia Untuk Jawaban dari Soal Matematika IPA SIMAK UI Tahun 2017 + Jawaban Secara Rinci lihat disini dan untuk menyimpan file diatas silakan berikut ini Baca Juga ya
DownloadSoal SIMAK UI 2009-2019 Buat kamu yang ingin masuk Universitas Indonesia (UI), selain melalui SNMPTN atau SBMPTN, kamu juga bisa masuk UI melalui jalur SIMAK UI . SIMAK UI adalah ujian seleksi mandiri masuk UI untuk menerima mahasiswa S1 Reguler, S1 Paralel, Vokasi serta Kelas Internasional UI.

Hallow sobat, bagaimana kabarnya hari ini? Semoga baik-baik saja. Pada kali ini saya akan sharing pembmahasan soal SIMAK UI Matematika IPA KA1 tahun 2014. Bagaimana menurut teman-teman soal matematika IPA KA1 tahun 2014 ini, menantangkan ? Yah, itu benar, sangat menantang. Sampai-sampai sulit untuk dikerjakan. Untuk soal nomor 1 sampai nomor 5, ada satu soal yang belum ketemu jawabannya yaitu nomor 1, padahal soalnya menurut saya relatif mudah yaitu penerapan Persamaan kuadrat baru. Mohon teman-teman Cek ya, mungkin ada salah dalah perhitungan atau konsepnya. Sementara untuk nomor 3, kelihatannya sulit karena menggunakan konsep logaritma dan bentuk mutlak. dan harus teliti karena melibatkan syarat logaritma. Soal nomor 2 matematika ipa KA1, menurut saya juga menantang, karena melibatkan fungsi, polinomial , dan analisis aljabar. pokoknya keren menurut saya. Semoga penjelasan kami bisa dimengerti dengan baik dan kalau ada alternatif penyelesaian, mohon di share ya, terima kasih. Nah untuk soal nomor 4, sebenarnya lebih mudah karena menggunakan konsep barisan dan deret aritmatika, hanya saja harus melibatkan turunan untuk menentukan nilai maksimumnya. Dan yang terakhir pada pmbahasan nomor 5, kami langsung memilih nilai vektor $ \vec{a} $ dari opsinya dan mengalikan dengan vektor $ \vec{d} $ yang hasilnya harus nol. Untuk pembahasan lengkap soal simak ui matematika IPA KA1 tahun 2014, langsung saja bisa dilihat berikut ini untuk nomor 1 sampai nomor 5. selamat belajar. $\clubsuit \, $ Operasi akar-akar $2x^2+x-2=0 \rightarrow a= 2 , \, b=1, \, c=-2 \, \, $ dengan akar-akar $ m $ dan $ n $ $m+n = \frac{-b}{a} = \frac{-1}{2} , \, \, mn = \frac{c}{a} = \frac{-2}{2} = - 1 $ * $m^2+n^2 = m+n^2 - 2mn = -\frac{1}{2}^2 - 2. -1 = \frac{9}{4} $ * $ m^3 + n^3 = m^2+n^2m+n - mnm+n $ $ = \frac{9}{4}.\frac{-1}{2} - -1. \frac{-1}{2} = -\frac{13}{8} $ * $ m^5 + n^5 = m^3+n^3.m^2+n^2-mn^2m+n $ $ = \frac{-13}{8}.\frac{9}{4} - -1^2.\frac{-1}{2} = -\frac{101}{32} $ $\clubsuit \, $ Menentukan persamaan kuadrat dengan akar-akar $ m^3-n^2 $ dan $ n^3-m^2 $ Rumus dasar $ x^2 - HJx + HK = 0 $ $\begin{align} HJ & = m^3-n^2 + n^3-m^2 \\ & = m^3+n^3 - m^2+n^2 \\ & = -\frac{13}{8} - \frac{9}{4} \\ & = - \frac{31}{8} \end{align}$ $\begin{align} HK & = m^3-n^2.n^3-m^2 \\ & = mn^3 + mn^2 - m^5+n^5 \\ & = -1^3 + -1^2 - -\frac{101}{32} \\ & = \frac{101}{32} \end{align}$ Sehingga PK nya adalah $ x^2 - HJx + HK = 0 \rightarrow x^2 - - \frac{31}{8}x + \frac{101}{32} = 0 $ $ \rightarrow 32x^2 + 124x + 101 = 0 $ Jadi, PK nya adalah $ 32x^2 + 124x + 101 = 0 . \heartsuit $ Nomor 2 Diketahui $px$ dan $gx$ adalah dua suku banyak yang berbeda, dengan $p10=m$ dan $g10=n$. Jika $pxhx=\left \frac{px}{gx}-1 \right \left px + gx \right , \, h10=-\frac{16}{15}$, maka nilai maksimum dari $m+n=...$ $\spadesuit \, $ Substitusi $ x = 10 $ $\begin{align} pxhx & =\left \frac{px}{gx}-1 \right \left px + gx \right \\ p10h10 & = \left \frac{p10}{g10}-1 \right \left p10 + g10 \right \\ m . \left -\frac{16}{15} \right & = \left \frac{m}{n}-1 \right \left m + n \right \\ m . \left -\frac{16}{15} \right & = \left \frac{m-n}{n} \right \left m + n \right \\ m . \left -\frac{16}{15} \right & = \left \frac{m-nm+n}{n} \right \\ -\frac{16}{15} & = \left \frac{m-nm+n}{ \right \\ \frac{16}{15} & = \left \frac{n-mn+m}{ \right \\ \frac{2 \times 8}{5 \times 3 } & = \left \frac{n-mn+m}{ \right \end{align}$ Diperoleh $ n = 5 , \, $ dan $ \, m = 3 $ atau $ n = -5 , \, $ dan $ \, m = -3 $ Sehingga nilai $ m + n = 3 + 5 = 8 $ atau $ m + n = -3 + -5 = -8 = 8 $ Jadi, nilai maksimum $ m + n = 8. \heartsuit $ Nomor 3 Himpunan penyelesaian pertidaksamaan $ \log x+1 \geq \log 3 + \log 2x-1$ adalah ... $\clubsuit \, $ Syarat logaritma ${}^a \log b = c \, $ syaratnya $ b > 0 $ $ \log x+1 \geq \log 3 + \log 2x-1 $ Syarat logaritmanya $ x+1 > 0 \rightarrow x \neq -1 $ $ 2x-1 > 0 \rightarrow x \neq \frac{1}{2} $ $\clubsuit \, $ Konsep dasar pertidaksamaan ${}^a \log fx \geq {}^a \log gx \rightarrow fx \geq gx \, $ dengan $ a > 1 $ $ fx \geq gx \rightarrow [fx+gx][fx-gx] \geq 0 $ $\clubsuit \, $ Menyelesaikan soalnya $\begin{align} \log x+1 & \geq \log 3 + \log 2x-1 \\ \log x+1 & \geq \log 32x-1 \\ \log x+1 & \geq \log 6x-3 \\ x+1 & \geq 6x-3 \\ [x+1+6x-3]&[x+1-6x-3] \geq 0 \\ 7x-2-5x+4 & \geq 0 \\ x = \frac{2}{7} & \vee x = \frac{4}{5} \end{align}$ Jadi, solusinya adalah $ HP = \{ \frac{2}{7} \leq x \leq \frac{4}{5} , \, x \neq \frac{1}{2} \, \} . \heartsuit $ Nomor 4 Diketahui suatu barisan aritmatika $\{a_n\}$ memiliki suku awal $a>0$ dan $2a_{10}=5a_{15}$. Nilai $n$ yang memenuhi agar jumlah $n$ suku pertama dari barisan tersebut maksimum adalah ... $\spadesuit \, $ Barisan aritmatika $ U_n = a + n-1b \, $ dan $ S_n = \frac{n}{2}2a+n-1b $ $\{a_n\} \, $ barisan aritmatika, sehingga $ a_n = a + n-1b \, $ dengan $ a > 0 $ $\spadesuit \, $ Menyederhanakan yang diketahui $\begin{align} 2a_{10} & =5a_{15} \\ 2a + 9b & =5a+14b \\ -3a & = 52b \\ a & = -\frac{52b}{3} \, \, \text{dengan} \, b < 0 \end{align}$ $\spadesuit \, $ Menentukan $ S_n $ dengan $ a = -\frac{52b}{3} $ $\begin{align} S_n & = \frac{n}{2}2a+n-1b \\ & = \frac{n}{2}2.-\frac{52b}{3} +n-1b \\ & = \frac{n}{2} -\frac{104b}{3} + nb - b \\ & = \frac{n}{2} -\frac{107b}{3} + nb \\ S_n & = \frac{b}{2}n^2 - \frac{107b}{6} n \\ S_n^\prime & = bn - \frac{107b}{6} \, \, \text{turunannya} \end{align}$ $\spadesuit \, $ Untuk menentukan $ S_n $ maksimum, maka turunan = 0 $\begin{align} S_n^\prime & = 0 \\ bn - \frac{107b}{6} & = 0 \\ n & = \frac{107}{6} = 17, 8333 \end{align}$ Karena $ n $ bulat, maka $ n $ yang menyebabkan maksimum adalah nilai $ n $ yang terdekat dengan 17,8333 selisih terkecil yaitu untuk $ n = 18 $ . Jadi, nilai $ n = 18 . \heartsuit $ Nomor 5 Misalkan diberikan vektor $\vec{b}=y,-2z,3x$, dan $\vec{c}=2z,3x,-y$. Diketahui vektor $\vec{a}$ membentuk sudut tumpul dengan sumbu $y$ dan $ \vec{a} = 2\sqrt{3}$. Jika $\vec{a}$ membentuk sudut yang sama dengan $\vec{b}$ maupun $\vec{c}$ , dan tegak lurus dengan $\vec{d} = 1,-1,2$ , maka $\vec{a}=...$ $\clubsuit \, $ Vektor $ \vec{a} $ tegak lurus vektor $ \vec{d} $ maka $ \vec{a}.\vec{d} = 0 $ Pilihan yang memenuhi adalah opsi E yaitu $ \vec{a}=2 \, -2 \, -2$, karena $\begin{align} \vec{a}.\vec{d} & = 2 \, -2 \, -2.1 \, -1 \, 2 \\ & = 2+2-4 \\ & = 0 \end{align}$ Jadi, vektor $ \vec{a}=2 \, -2 \, -2 . \heartsuit $ Jika ada masukan, saran, kritikan, alternatif penyelesaian lain yang lebih mudah, atau apapun yang berhubungan dengan halaman ini, silahkan kirim ke email , atau langsung isi komentar pada kotak komentar di bawah ini. Semoga bermanfaat, terima kasih.

Untuk permasalahan soal SIMAK UI kali ini ditanyakan oleh Bernat Yusuf Sihite. Soal yang ditanyakan ini berasal dari soal SIMAK UI matematika IPA tahun 2010 kode 504. Soal simak UI ini tidak berhasil diselesaikan di ruang kelas, sehingga pembahasannya kita lanjutkan melalui ruang ini saja. Seperti apa soalnya, mari kita coba diskusikan. Seleksi Masuk Universitas Indonesia sering dikenal dengan istilah SIMAK UI. Penyelenggara SIMAK UI hanyalah Universitas Indonesia yang tujuannya untuk merekrut penerimaan mahasiswa baru. Perlu diketahui bahwa materi yang diujikan pada SIMAK UI adalah Kemampuan Dasar KD terdiri atas Bahasa Indonesia, Bahasa Inggris, dan Matematika Dasar. Kemampuan IPA KA terdiri atas Biologi, Kimia, Fisika, Matematika IPA dan IPA Terpadu. Kemampuan IPS KS terdiri atas Geografi, Ekonomi, Sejarah, dan IPS Terpadu. Materi apa saja yang harus adik-adik pelajari??? Tentu hal ini tergantung dari prodi apa yang kalian pilih. Untuk jelasnya perhatikan berikut ini Jika adik-adik memilih prodi IPA maka materi yang harus kalian pelajari adalah KD dan KA. Jika adik-adik memilih prodi IPS maka materi yang harus kalian pelajari adalah KD dan KS. Jika adik-adik memilih prodi IPC IPA dan IPS maka kalian tentu harus lebih ekstra mempelajari tiga kemampuan yaitu KD, KA, dan KS. Baiklah, adik-adik karena ini seleksi tentu PERSIAPAN adalah salah satu penentu kelulusan. Untuk itu silahkan perhatikan Soal dan Pembahasan Matematika IPA SIMAK UI Tahun 2017 berikut ini Matematika SIMAK UI 2017 No. 1 Jika lingkaran $x^2+y^2-2ax+b=0$ berjari-jari 2 menyinggung garis $x-y=0$. Maka jumlah kuadrat semua nilai $a$ yang mungkin adalah …. A. 2 B. 8 C. 12 D. 16 E. 18 Pembahasan Lingkaran $x^2 + y^2-2ax+b=0$ berjari-jari 2 $A = -2a, B = 0, C = b$ Titik pusat $\left \frac{A}{-2}, \frac{B}{-2} \right$ = a, 0 Panjang jari-jari lingkaran sama dengan jarak titik pusat a, 0 ke garis singgung $x-y = 0$. $\begin{align} \left \frac{ \right &=2 \\ \left \frac{a}{\sqrt{2}} \right & =2 \\ \left a \right & =2\sqrt{2} \\ a & =\pm 2\sqrt{2} \\ \end{align}$ $a_1=2\sqrt{2}$, atau ${{a}_{2}}=-2\sqrt{2}$ Jumlah kuadrat semua nilai $a$ yang mungkin adalah $\begin{align} a_1^2+a_2^2&=\left2\sqrt{2}\right^2+\left-2\sqrt{2}\right^2 \\ &=8 + 8\\ &=16 \end{align}$ Kunci D Matematika SIMAK UI 2017 No. 2 Jika $x_1$ dan $x_2$ adalah akar-akar $2x^2-2c-1x-c^3+4=0$, maka nilai maksimum $x_{1}^{2}+x_{2}^{2}$ adalah … A. $-4\frac{3}{4}$ B. $-3\frac{3}{4}$ C. $-2\frac{3}{4}$ D. $2\frac{3}{4}$ E. $3\frac{3}{4}$ Pembahasan $2x^2-2c-1x-c^2+4=0$ $A=2$, $B=-2c+1$, $-c^3+4$ $x_1+x_2=\frac{-B}{A} = \frac{2c-1}{2}$ $ = \frac{4-c^3}{2}$ $\begin{align} x_1^2+x_2^2&=x_1+x_2^2-2x_1x_2 \\ &=\left \frac{2c-1}{2} \right^2-2.\frac{4-c^3}{2} \\ &=\frac{4c^2-4c+1}{4}-\frac{16-4c^3}{4} \\ &=\frac{4c^3+4c^2-4c-15}{4} \\ x_1^2+x_2^2&=c^3+c^2-c-\frac{15}{4} \end{align}$ $\frac{d}{dc}\leftx_1^2+x_2^2 \right = 0$ $3c^2+2c-1=0$ $3c-1c+1=0$ $c=\frac{1}{3}$ atau $c=-1$ Uji turunan kedua $\frac{d^2}{dc^2}=6c+2$ $c=\frac{1}{3} \rightarrow \frac{d^2}{dc^2}=6.\frac{1}{3}+2 = 4 > 0$ maka diperoleh nilai minimum untuk $c=\frac{1}{3}$ $c=-1 \rightarrow \frac{d^2}{dc^2}=6.-11+2 = -4 11$ C. $x \le 1$ atau $x \ge 11$ D. $-1 x > -1$ $-1 0 \rightarrow x > 1$ maka ${{S}_{\infty }}=\frac{a}{1-r}$ $1=\frac{x-1}{1-{{x-1}^{2}}}$ $1=\frac{x-1}{1-{{x}^{2}}+2x-1}$ $-{{x}^{2}}+2x=x-1$ ${{x}^{2}}-x-1$ $x=\frac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ $x=\frac{1+\sqrt{{{-1}^{2}} $x=\frac{1+\sqrt{5}}{2}$ Kunci B Matematika SIMAK UI 2017 No. 7 Jika $sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$ dengan $0\le x \le \frac{\pi}{2}$, maka $sin \ 2x$ = … A. $\frac{4}{5}$ B. $\frac{3}{5}$ C. $\frac{2}{5}$ D. $\frac{1}{5}$ E. 0 Pembahasan $sin \ 2x+cos \ 2x=-16cos \ x + 8sin \ x + cos^2 \ x$ $2\sin \ x.\cos x+2{{\cos }^{2}}x-1$ = $-16\cos x+8\sin x+{{\cos }^{2}}x$ $2\sin \ x.\cos x+16\cos x+{{\cos }^{2}}x-1-8\sin x=0$ $2\cos x\sin \ x+8-{{\sin }^{2}}x-8\sin x=0$ $2\cos x\sin \ x+8-\sin x\sin x+8=0$ $2\cos x-\sin x\sin \ x+8=0$ $2\cos x-\sin x=0$ $\sin x=2\cos x$ $\frac{\sin x}{\cos x}=2$ $\tan x=\frac{2}{1}=\frac{de}{sa}$ maka $mi=\sqrt{{{2}^{2}}+{{1}^{2}}}=\sqrt{5}$ $\sin x=\frac{de}{mi}=\frac{2}{\sqrt{5}}$ dan $\cos x=\frac{sa}{mi}=\frac{1}{\sqrt{5}}$ $sin\ 2x=2\sin x.\cos x$ $sin\ 2x=2.\frac{2}{\sqrt{5}}.\frac{1}{\sqrt{5}}=\frac{4}{5}$ Kunci A Matematika SIMAK UI 2017 No. 8 $\lim_{x\to \frac{\pi }{2}}\frac{\sec 2x+2}{\tan 2x}$ = … A. $-2$ B. $-1$ C. $-\frac{1}{2}$ D. 0 E. 1 Pembahasan Misal $y=x-\frac{\pi }{2}\leftrightarrow x=y+\frac{\pi }{2}$ Jika $x\to \frac{\pi }{2}$ maka $y\to 0$ $\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\sec 2x+2}{\tan 2x}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{\sec 2\left y+\frac{\pi }{2} \right+2}{\tan 2\left y+\frac{\pi }{2} \right}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\sec 2y+2}{\tan 2y}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-\frac{1}{\cos 2y}+2}{\frac{\sin 2y}{\cos 2y}}$ $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-1+2\cos 2y}{\sin 2y}$ Dengan teorema L’Hospital $=\underset{y\to 0}{\mathop{\lim }}\,\frac{-4\sin 2y}{2\cos 2y}$ $=\underset{y\to 0}{\mathop{\lim }}\,-2\tan 2y$ $=-2.\tan $=0$ Kunci D Matematika SIMAK UI 2017 No. 9 $6\int\limits_{0}^{1}{\cos \pi x+{{x}^{2}}-3x+2dx}$ = $a-1a-5$, maka nilai $a$ adalah … A. $-2$ atau $-3$ B. 0 atau $-6$ C. 2 atau $-2$ D. 0 atau 6 E. 2 atau 3 Pembahasan $6\int\limits_{0}^{1}{\cos \pi x+{{x}^{2}}-3x+2dx}=a-1a-5$ $\left. 6\left \frac{1}{\pi }\sin \pi x+\frac{1}{3}{{x}^{3}}-\frac{3}{2}{{x}^{2}}+2x \right \right_{0}^{1}=a-1a-5$ $6\left 0+\frac{1}{3}-\frac{3}{2}+2 \right-0={{a}^{2}}-5a-a+5$ $2-9+12={{a}^{2}}-5a-a+5$ ${{a}^{2}}-6a=0$ $aa-6=0$ $a=0$ atau $a=6$Kunci D Matematika SIMAK UI 2017 No. 10 Diberikan kubus dengan panjang rusuk $5a$. Sebuah titik P terletak pada rusuk CG sehingga CP PG = 2 3. Bidang PBD membagi kubus menjadi dua bagian dengan perbandingan volume …. A. 114 B. 113 C. 112 D. 111 E. 110 Pembahasan Perhatikan gambar berikut $V_1$ = Volume $=\frac{1}{3}.\frac{ $=\frac{1}{3}.\frac{ $=\frac{25a^3}{3}$ Volume Kubus = $ = 125a^3$ $V_2$ = Volume $= Volume \ Kubus - V_1$ $=125a^3-\frac{25a^3}{3}$ $V_2=\frac{350a^3}{3}$ $V_1V_2=\frac{25a^3}{3}\frac{350a^3}{3}$ $V_1V_2=114$ Kunci A Matematika SIMAK UI 2017 No. 11 Diberikan kubus dengan panjang rusuk 8. Di dalam kubus tersebut terdapat sebuah limas segiempat beraturan dengan tinggi $a$. Jika JIka titik Q terletak pada rusuk FG sehingga QG = FQ dan jarak antara titik Q ke bidang PCD adalah 4, maka nilai $a$ adalah …. A. 3 B. 4 C. 5 D. 6 E. 7 Pembahasan Matematika SIMAK UI 2017 No. 12 Jika $fx = \frac{1}{3}x^3-2x^2+3x$ dengan $-1 \le x \le 2$ mempunyai nilai maksimum di $a, b$, maka nilai $\int\limits_{a}^{b}{f'xdx}$ adalah … A. $\frac{16}{81}$ B. $\frac{15}{81}$ C. $\frac{12}{81}$ D. $\frac{9}{81}$ E. $\frac{8}{81}$ Pembahasan $fx = \frac{1}{3}x^3-2x^2+3x$ $f'x=0$ $f'x={{x}^{2}}-4x+3=0$ $x-3x-1=0$ $x=3$ atau $x=1$, nilai maksimum pada interval $-1 \le x \le 2$ Uji nilai x = $-1$, 1, dan 2 $f-1=\frac{1}{3}{{-1}^{3}}-2{{-1}^{2}}+3-1=-\frac{16}{3}$ $f1=\frac{1}{3}{{1}^{3}}-{{ $f2=\frac{1}{3}{{.2}^{3}}-{{ nilai maksimum di titik $\left 1,\frac{4}{3} \right=\left a,b \right$ $\int\limits_{a}^{b}{{f}'xdx}=\left. fx \right_{a}^{b}$ $=\left. \frac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x \right_{1}^{\frac{4}{3}}$ $=\left[ \frac{1}{3}{{\left \frac{4}{3} \right}^{3}}-2{{\left \frac{4}{3} \right}^{2}}+3\left \frac{4}{3} \right \right]-\frac{4}{3}$ $=\frac{64}{81}-\frac{32}{9}+\frac{12}{3}-\frac{4}{3}$ $=-\frac{8}{81}$ Kunci Tidak ada opsi yang memenuhi. Gunakan petunjuk C dalam mengerjakan soal nomor 13 sampai nomor 15 Matematika SIMAK UI 2017 No. 13 Diketahui vector $\overrightarrow{a}=1,1,p$, $\overrightarrow{b}=-2,n,-3$, $\overrightarrow{c}=m,4n,4$, dan $\overrightarrow{d}=2m,4-p,8$. Jika $\overrightarrow{a}$ tegak lurus dengan $\overrightarrow{b}$ dan $\overrightarrow{c}$, sejajar dengan $\overrightarrow{d}$, maka …. 1 $2n-6p=4$ 2 $m$ sembarang bilangan real 3 $n+p=\frac{2}{25}$ 4 $n=\frac{13}{25}$ Pembahasan $\overrightarrow{a}\bot \overrightarrow{b}$ maka $\vec{a}.\vec{b}=0$ $1,1,p.-2,n-3=0$ $-2+n-3p=0$ $n-3p=2$ } kali 2 $2n-6p=4$ maka 1 benar $\overrightarrow{a}\bot \overrightarrow{b}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\vec{b}\bot \overrightarrow{d}$ $\vec{b}.\overrightarrow{d}=0$ $-2,n,-32m,4-p,8=0$ $-4m+4n-np-24=0$ $4n-np=4m+24$ $\vec{a}\bot \overrightarrow{c}$ dan $\vec{a}\parallel \overrightarrow{d}$ maka $\overrightarrow{c}\bot \overrightarrow{d}$ $\overrightarrow{c}.\overrightarrow{d}=0$ $m,4n,42m,4-p,8=0$ $2{{m}^{2}}+16n-4np+32=0$ $2{{m}^{2}}+44n-np+32=0$ $2{{m}^{2}}+44m+24+32=0$ ${{m}^{2}}+8m+80=0$ Uji diskriminan $D={{b}^{2}}-4ac$ $={{8}^{2}} $=-256 < 0$ Maka nilai m imaginer. Jadi 2 salah. Nah yang lain tidak perlu kita cek, maka opsinya adalah B. Kunci B Matematika SIMAK UI 2017 No. 14 Jika $\sin \ 10^o = a$, maka … 1 $\frac{1}{sin \ 10^o}-4 \ sin \ 70^o = 2$ 2 $\frac{1}{sin \ 10^o}+4 \ sin \ 70^o = 2a$ 3 $\frac{1}{sin \ 10^o}-8 \ sin \ 70^o = 4-\frac{1}{a}$ 4 $\frac{1}{sin \ 10^o}-16 \ sin \ 70^o = 8-\frac{1}{a}$ Pembahasan Matematika SIMAK UI 2017 No. 15 Jika $fx = sin \ 3x + x^3+4x^2+5x$, maka … 1 $f'0.f''0=64$ 2 $\frac{f''0}{f'0}=1$ 3 $\frac{f'''0}{f''0}=\frac{-21}{8}$ 4 $f'''0-f''0+f'0=15$ Pembahasan $fx = sin \ 3x + x^3+4x^2+5x$ $f'x=3\cos \ 3x+3{{x}^{2}}+8x+5$ $f'0=3\cos \ $f''x=-9\sin 3x+6x+8$ $f''x=-9\sin $f'''x=-27\cos 3x+6$ $f'''x=-27\cos 1 ${f}'0.{f}''0= benar 2 $\frac{f''0}{f'0}=\frac{8}{8}=1$ benar. 3 $\frac{f'''0}{f''0}=\frac{-21}{8}$, benar 4 ${f}'''0-{f}''0+{f}'0=-21-8+8=-21\ne 15$, salah Karena 1, 2, dan 3 benar, sedangkan 4 salah maka opsi A. Kunci A Semoga postingan Pembahasan Soal SIMAK UI 2017 Matematika IPA ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. Subscribe and Follow Our Channel
Soalmatematika paling sulit sedunia matematrick 5 soal un matematika sma ipa 2017 dan pembahasannya merasa pintar coba kerjakan 5 soal matematika ini merahputih soal matematika viral ini bikin heboh 3 juta orang tekno tempo co soal integral dan pembahasan simak ui 2014 matematika ipa. Soal ulangan fisika kelas 10 kunci dunia. 13 pertanyaan
SOAL SIMAK UI MATEMATIKA IPA 2017 Berisi soal-soal SIMAK UI Mata pelajaran Matematika IPA tahun 2010 – 2017. Soal –soal ini merupakan soal asli naskah asli yang terdiri dari Soal Matematika IPA SIMAK UI tahun 2010, Soal Matematika IPA SIMAK UI tahun 2011, Soal Matematika IPA SIMAK UI tahun 2012, Soal Matematika IPA SIMAK UI tahun 2013, Soal Matematika IPA SIMAK UI tahun 2014, Soal Matematika IPA SIMAK UI tahun 2015, Soal Matematika IPA SIMAK UI tahun 2016, dan Soal Matematika IPA SIMAK UI tahun 2017. Soal-soal ini dapat digunakan oleh adik-adik SMA atau para guru SMA sebagai latihan untuk persiapan SIMAK UI tahun 2018, soal ini dapat digunakan gratis, tetapi harap mencantumkan link pembuat soal ini atau tidak diubah demi menghargai proses pembuatan/penulisan kembali soal ini. Soal-soal ini dapat anda gunakan sebagai latihan persiapan SIMAK UI tahun 2018. Kami berharap dengan pembagian soal-soal ini dapat berkontribusi dalam menyebarkan ilmu pengetahuan kepada masyarakat indonesia. Semoga soal ini bermanfaat untuk anda. Salam Perjuangan! Bimbingan Alumni UI. Download File Baca yang lainnya Matematika IPA SIMAK UI 2010 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2011 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2012 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2013 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2014 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2015 - Bimbingan Alumni UI Soal Matematika IPA SIMAK UI 2016 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2017 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2017 - Bimbingan Alumni UI1 Matematika IPA SIMAK UI 2018 - Bimbingan Alumni UI - 1 Matematika IPA SIMAK UI 2018 - Bimbingan Alumni UI - 2 Matematika IPA SIMAK UI 2019 - Bimbingan Alumni UI
\n pembahasan soal simak ui 2017 matematika ipa
Pembahasankali ini selain disusun urut dan terinci agar mudah dipahami juga disertai dengan TRIK SUPERKILAT yang mampu mengoptimalkan waktu pengerjaan pada SIMAK UI nanti. Langsung saja, berikut ini adalah pembahasan soal SIMAK UI 2011 untuk kemampuan dasar bidang Matematika Dasar yang terdiri dari 20 soal.
- Download Soal dan Pembahasan SIMAK UI 2017. Hai sobat skul, kali ini kami akan membagikan sebuah artikel yang kami harap bisa bermanfaat bagi kalian semua yang datang ke blog ini. Disini kami akan membagikan soal dan pembahasan SIMAK UI tahun 2017 dimana nantinya kami akan membagikan untuk tahun-tahun sebelumnya dan kami juga akan membagikan kumpulan soal dan pembahasan dari Ujian Mandiri dari semua universitas yang ada di Indonesia. Mohon maaf sebelumnya karena tidak lengkapnya baik soal dan pembahasan dari artikel yang kami buat kali ini, semoga dalam waktu dekat ini kami bisa melengkapi kekurangan tersebut. Untuk melihat lebih banyak lagi soal dan pembahasan SIMAK UI bisa lihat disini SIMAK UI adalah ujian seleksi terpadu masuik UI yang diselenggarakan UI bagi calon mahasiswa yang ingin melanjutkan pendidikan di UI. Ujian ini dilakukan untuk seluruh program pendidikan yang ada di UI, mulai program vokasi D3, Sarjana Kelas Paralel, Profesi, Spesialis, Magister, dan Doktor. Sedangkan Ujian SIMAK Sarjana Kelas Internasional dan sarjana Ekstensi dilaksanakan pada waktu yang berbeda. Ujian ini dilakukan secara serentak di seluruh Indonesia Jakarta, Tangerang, Tangsel, Bekasi, Depok, Bogor, Bandung, Jogjakarta, Surabaya, Padang, Medan, Palembang, dan Makassar yang artinya untuk mengikuti seleksi ini kita tidak harus pergi ke UI itu sendiri. SIMAK UI merupakan sebuah Ujian Mandiri UM singkatan dari Seleksi Masuk UI yang dilaksanakan oleh Universitas Indonesia. SIMAK UI merupakan salah satu jalur masuk Universitas Indonesia. Bagi kalian yang tidak mendapatkan kesempatan melalui jalur SNMPTN dan masih bimbang dengan hasil UTBK, kalian bisa mengikuti SIMAK UI ini. Soal yang nantinya diujikan dalam SIMAK UI bisa dibilang mirip dengan soal pada SBMPTN. Oleh karena itu agar kita bisa lolos SIMAK UI, alangkah baiknya kita sering melakukan latihan soal dari SIMAK UI tahun sebelumnya dan bila perlu, kita juga bisa mengasah kemampuan kita dengan berlatih soal SBMPTN tahun sebelumnya agar persiapan kita semakin matang. Pembagian Kelompok SIMAK UI Adapun kelompok ujian dalam SIMAK UI dibagi menjadi 3 kelompok diantaranya Kelompok Ujian Sains dan Teknologi Saintek Kelompok Ujian Siosial dan Humaniora Soshum Kelompok Ujian Campuran Saintek dan Soshum Peserta bisa mengikuti SIMAK UI tersebut dengan memilih salah satu kelompok baik Saintek, Soshum, maupun Campuran. Materi yang diujikan pada SIMAK UI Adapun materi tertulis yang harus di kerjakan bagi para peserta yaitu soal berdasarkan pembagian kelompoknya diantaranya adalah Kemampuan Dasar KD terdiri dari Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris Kemampuan IPA KA terdiri dari Matematika IPA, Biologi, Fisika, dan Kimia Kemampuan IPS KS terdiri dari Sosiologi, Sejarah, Geografi, dan Ekonomi Berikut kami paparkan soal dan pembahasan SIMAK UI tahun 2017. Semoga artikel ini bisa membantu kalian dalam pemahaman materi sebelum melakukan ujian dalam waktu dekat ini. Download Soal & Pembahasan SIMAK UI 2017 Tanpa basa-basi lebih lama lagi, berikut kami paparkan soal dan pembahasan SIMAK UI tahun 2017 1. Kemampuan Dasar KD 3. Kemampuan IPS KS Soal 1 Download Itu saja yang bisa kami sampaikan di artikel kali ini, semoga artikel ini bisa membantu kalian semua yang nantinya akan menghadapi SIMAK UI dalam waktu dekat ini. Semoga kalian bisa memperoleh hasil yang maksimal dan bisa diterima dikampus idaman kalian. Semoga blog ini bisa menyajikan lebih banyak manfaat untuk kalian nantinya. Sedikit juga harapan dari kami, semoga blog ini bisa konsisten terus menghadirkan sesuatu yang bermanfaat bagi kalian semua, sehingga bisa turut andil dalam memajukan pendidikan diIndonesia. GOOD LUCK!!! Untuk meningkatkan kenyamanan pengunjung, mohon beritahu kami bila ada link yang error dikolom komentar. Baca Download Soal dan Pembahasan SIMAK UI 2016 Download Soal dan Pembahasan SIMAK UI 2015 Download Soal dan Pembahasan SIMAK UI 2014
th - Silahkan didownload soal dan pembahasan matematika STIS 2017 No. 35-41. Materi yang diujikan integral, limit, dan logika. Didalam soal dan pembahasan matematika STIS 2017 sudah ada KonseR (Konsep dasaR), semoga bermanfaat bagi yang membutuhkan dan dapat menambah atau memperkaya soal-soal yang sering diujikan untuk masuk
SeleksiMasuk. TKA Saintek UTBK. Masih belum yakin mengerjakan soal UTBK Matematika? Nggak masalah, kamu hanya perlu berlatih lebih giat. Latihan lagi yuk, simak soal Matematika beserta pembahasannya di bawah ini! ---. 1) Topik : Aljabar Saintek. Subtopik : Barisan dan Deret. Misal adalah barisan aritmetika dengan suku pertama a dan beda 2a. BerbagiSoal dan Pembahasan Assesmen Nasional, UTBK, SIMAK UI, UTUL UGM, UM UNDIP, SM USU, Soal Olimpiade, STIS, STAN, CPNS, UMPN, Sipenmaru POLTEKES. Soal dan Pembahasan OGN Guru Matematika SMP Tahun 2015 Tingkat Kabupaten/Kota Soal OGN Guru IPA Fisika SMP. Soal OGN Guru IPA Fisika SMP Tahun SoalKemampuan IPA SIMAK UI Tahun 2015 + Jawaban Secara Rinci - Selamat sore menjelang malam para pejuang SIMAK UI, Semangat kalian yang pantang menyerah dalam mengejar impian masuk ke KampusJas Kuning hingga saat ini, suatu saat akan membuahkan hasil. Pada moment ini guna memperlancar semua itu, membagikan SoalCPNS Logika . Soal CPNS Logika – Soal CPNS Logika dan analitis ditujukan untuk menguji kemampuan peserta dalam berpikir logis dan analitis ketika menghadapi suatu kasus dalam pekerjaannyaSoal penalaran ini akan selalu muncul di dalam tes Kompetensi Dasar CPNS dan tes Potensi Akademik. Untuk itu saya ingin membagikan beberapa contoh Nah berikut ini soal UTS-nya: Soal UTS IPA kelas 8 semester Soal UTS IPA kelas 8 semester 2.doc. Itulah yang dapat kami bagikan terkait materi ipa ktsp untuk kelas 8 SMP yang sengaja kami perlengkap dengan soal UTS-nya. Semoga keduanya bermanfaat dan dapat menunjang aktivitas pembelajaran IPA di kelas masing-masing. Dibawahini adalah file pdf kumpulan soal kunci jawaban dan pembahasan simak ui tahun 2017 2018 dan 2019. Silakan pembaca memberikan koreksi bila dijumpai kekurangtepatan dalam pembahasan soal ini. Pembahasan Soal Simak Ui Kimia 2014 No 46 Youtube Buku Soal Dan Pembahasan Simak Ui Matematika Ipa 2009 2019 2020 Kode
Persiapkandiri dengan pembahasan soal SIMAK UI, Matematika dasar dan matematika IPA SIMAK UI 2022 lewat artikel ini yuk. Setelah tahu apa saja materi dari
PembahasanSIMAK UI 2018/2019 ini adalah hasil pemikiran sederhana saya yang tentu masih jauh dari kata sempurna. Saya sangat menghargai kritik dan saran dari pengunjung setia
Pembahasansoal un matematika sma ipa 2017 paket 1 (1). Pembahasan un unbk bahasa indonesia smp 2018 paket 2 komplit 50 sebagai persiapan menghadapi ujian nasional un tahun 2019 berikut disajikan . Ujian tulis ptn mandiri 2022, seleksi mandiri ptn mandiri 2022, cara cerdas sukses ujian masuk stan, tpa stan, simak ui, um undip, smup unpad
TopPDF PEMBAHASAN SOAL MATEMATIKA IPA SIMAK UI dikompilasi oleh 123dok.com. Top PDF PEMBAHASAN SOAL MATEMATIKA IPA SIMAK UI dikompilasi oleh 123dok.com. Soal dan Solusi Simak UI Matematika IPA, 2013 5.. akar kembar dan positif D.[r] 1 Baca lebih lajut. solusi 1 simak ui mat das kode 524 20121
FNMv.